报告题目【MDS codes with hulls of arbitrary dimensions and their quantum error correction】
时间:2019年06月04日(星期二)10:10
地点:旗山校区理工北楼601报告厅
主讲:南京航空航天大学教授,曹喜望
主办:福建省网络安全与密码技术重点实验室
参加对象:相关研究生和教师
报告人简介:曹喜望,南京航空航天大学理学院教授,博士生导师。师从樊恽教授获得硕士学位,师从北京大学丘维声教授获得博士学位。研究方向是有限域及其应用,在差集、指数和、有限域上的多项式、量子信息处理以及代数编码方面做出了出色的工作,其研究成果发表在相关领域的权威期刊IEEE Transaction on Information Theory、Finite Fields and their Applications、Design Codes and Cryptography、Science China(Mathematics)等,发表学术论文80余篇,出版专著一部。曹喜望教授先后多次访问过Sydney大学、香港科技大学、台湾中央研究院、北京国际数学中心、南开大学陈省身数学研究所等。2010年入选江苏省“青蓝工程”学术带头人,现为国家自然科学基金项目函审人、美国数学会会员、美国数学评论评论员、International Mathematical Union会员、10多家国际SCI/EI期刊审稿人。主持国家自然科学基金面上项目和省部级科研项目多项。2017年获得江苏省科学技术奖。
报告摘要:Let $q$ be a power of a prime and $\Ff_q$ denote the finite field with $q$ elements. An $[n,k,d]$ linear code over $\Ff_q$ is a $k$-dimensional subspace of $\Ff_q^n$ with minimum Hamming distance $d$. Let $\Ff_q^n$ stand for the vector space with dimension $n$ over $\Ff_q$. Maximum distance separable (MDS) codes are optimal in the sense that no code of length $n$ with $K$ codewords has a larger minimum distance than that of a MDS code with length $n$ and size $K$. Mathematically, an $[n,k,d]$ code $\cc$ is called a MDS code if $n=k+d-1$. The purpose of this paper is to construct linear codes from generalized Reed-Solomon (GRS) codes or extended generalized Reed-Solomon codes and determine their hull. Inspired by the idea of [6], we propose several constructions of MDS codes with hulls of arbitrary dimensions. Furthermore, by using these MDS codes with hulls of arbitrary dimensions, we obtain several new infinite families of MDS EAQECCs.