邮箱:fangdingbang@fjnu.edu.cn
电话:--
办公室:科技楼1121
研究领域:智能软件安全,人工智能
方定邦,博士。2023毕业于日本广岛大学,信息与数据科学专业,获得博士学位。研究方向是智能软件安全,深度学习。曾短暂就职于泉州华中科技大学智能制造研究院,担任算法工程师。先后在IEEE TR,QRS,IJSEKE等期刊和会议上发表学术论文十余篇。担任多个学术期刊和学术会议程序委员会委员和审稿人。目前主持国家自然科学基金青年基金一项,参与福建省自然科学基金和日本ROIS NII开放合作研究。
1.2024.4-今:福建师范大学计算机与网络空间安全学院,讲师
2.2020.10-2023.9, 日本广岛大学,信息与数据科学,博士
3.2020.7-2020.12,泉州华中科技大学智能制造研究院,算法工程师
1. 国家自然科学基金青年项目:基于轻量级代码语义图的神经网络缺陷预测技术,项目编号6240071372,主持,2025.1-2027.12
2. ROIS NII项目: 振動法テストに基づくプログラムの正しさの自動検証手法と支援ツールに関する研究(基于振动法测试的程序正确性的自动验证方法与辅助工具的研究),项目编号:21FS02,参与,2020.1-2022.10
3. 福建省自然科学基金项目,立体视频可逆水印技术研究,项目编号:2016J01306,参与,2016.8-2019.8
1.Fang D., Liu S., “Gated Homogeneous Fusion Networks With Jointed Feature Extraction for Defect Prediction,” IEEE Transactions on Reliability (TR), 2022, 71(2): 512-526.
2.Fang D., Liu S., Li Y, “Cross-Project Transfer Learning on Lightweight Code Semantic Graphs for Defect Prediction,” International Journal of Software Engineering and Knowledge Engineering, 2023, 33(7).
3.Fang D., Liu S., Liu A., “EPR: A neural network for automatic feature learning from code for defect prediction,” 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS), IEEE, 2021: 482-492.
4.Fang D., Liu S., Liu A., “Combining Attention-based Gated Bidirectional LSTM and ODCN for Software Defect Prediction,” ソフトウェアエンジニアリングシンポジウム 2021 論文集, 2021: 175-180.
5.Liu H, Liu S, Xu G, Fang D., et al. NNTBFV: Simplifying and Verifying Neural Networks Using Testing-Based Formal Verification[J]. International Journal of Software Engineering and Knowledge Engineering, 2024, 34(02): 273-300.
6.Liu, H., Liu, S., Liu, A., Fang D., Xu, G. (2023). Verifying and Improving Neural Networks Using Testing-Based Formal Verfication. In: Liu, S., Duan, Z., Liu, A. (eds) Structured Object-Oriented Formal Language and Method. SOFL+MSVL 2022. Lecture Notes in Computer Science, vol 13854. Springer, Cham.
7.Fang D., Zhang C., “Multi-Feature Learning by Joint Training for Handwritten Formula Symbol Recognition, IEEE Access, vol. 8, pp. 48101-48109, 2020.
8.Fang D., Feng G. and Yang H., “Gabor Features Assist Semantic Feature Learning for Handwritten Formula Symbol Recognition,” IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 2019, pp. 1-4.
9.方定邦, 冯桂, 曹海燕,等. 基于多特征卷积神经网络的手写公式符号识别[J]. 激光与光电子学进展, 2019, 56(7).
10.杨恒杰,闫铮,邬宗玲,方定邦,等.基于循环神经网络的图像特定文本抽取⽅法[J].激光与光电子学进展,2019,56(24).
[获奖]
1.熊平奖学文化财团奖学金 2023
2.广岛大学优秀学生奖学金 2022
3.福建省优秀专业硕士学位论文 2021
[教学]
网络分析与故障诊断