报告题目:Classifying Network Traffic in the Big Data Era
时 间:2013年9月12日(星期四)下午 15:00
地 点:仓山校区成功楼603教室
参加对象:数计学院部分教师和研究生
报告摘要:
With the arrival of Big Data Era, properly utilizing the power of big data is becoming increasingly essential for the strength and competitiveness of businesses and organizations. We are facing grand challenges from big data from different perspectives, such as processing, communication, security, and privacy. In this talk, we discuss the big data challenges in network traffic classification and our solutions to the challenges. The significance of the research lies in the fact that each year the network traffic increase exponentially on the current Internet.
Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply machine-learning techniques to flow statistical feature based classification methods. In this talk, we propose a series of novel approaches for traffic classification, which can improve the classification performance effectively by incorporating correlated information into the classification process. We analyze the new classification approaches and their performance benefit from both theoretical and empirical perspectives. A large number of experiments are carried out on two real-world traffic datasets to validate the proposed approach. The results show the traffic classification performance can be improved significantly even under the extreme difficult circumstance of very few training samples. Our work has significant impact on security applications.
专家简介: