报告题目:Quantitative recurrence properties for x3 map on the Cantor ternary set
时间:2017年11月11日(星期六)16:10-16:55
地点:理工北楼601
主办:数学与信息学院
主讲:常远洋
参加对象:相关研究方向教师和研究生
报告人简介:常远洋,武汉大学博士,现为华南理工大学博士后。主要研究兴趣:遍历论、动力系统、分形几何、度量数论。
报告摘要: We study the quantitative recurrence properties for x3 map on the classical Cantor ternary set K. It is known by Poincaré’s Recurrence Theorem that almost all points on K are recurrent. We improve this by showing that the measure of the recurrent set is full or null according as a series diverges or converges. Moreover, similar dichotomy law holds for general Hausdorff measures by virtue of the mass transference principle developed by Beresnevich and Velani.