华南理工大学博士后常远洋学术报告11月11日下午

发布时间:2017-11-09浏览次数:638

报告题目Quantitative recurrence properties for x3 map on the Cantor ternary set


时间20171111日(星期六)16:10-16:55


地点理工北楼601


主办数学与信息学院


主讲:常远洋


参加对象:相关研究方向教师和研究生


报告人简介常远洋,武汉大学博士,现为华南理工大学博士后。主要研究兴趣:遍历论、动力系统、分形几何、度量数论。


报告摘要We study the quantitative recurrence properties for x3 map on the classical Cantor ternary set K. It is known by Poincaré’s Recurrence Theorem that almost all points on K are recurrent. We improve this by showing that the measure of the recurrent set is full or null according as a series diverges or converges. Moreover, similar dichotomy law holds for general Hausdorff measures by virtue of the mass transference principle developed by Beresnevich and Velani.