报告人:Siqi Fu 教授 Rutgers University–Camden
报告题目:Hearing pseudoconvexity in Lipschitz domains with holes via ∂ ̄
时 间:2017年6月20日(星期二)15:00 -16:00
地 点:旗山校区理工北楼601报告厅
主 办:数学与计算机科学学院, 福建省分析数学及应用重点实验室, 数学研究中心
参加对象:相关研究方向老师和研究生
报告摘要:In this talk, we explain how one can determine pseudoconvexity in Lipschitz domains with holes via spectral property of the ∂ ̄-Neumann Laplacian. More precisely, let Ω = Ω\ D where Ωis a bounded domain with connected complement in Cn and D is relatively compact open subset of Ωwith connected complement in Ω. We obtain characterizations of pseudoconvexity of Ωand D through the vanishing or Hausdorff property of the Dolbeaultcohomology groups on various function spaces. In particular, we show that if the boundaries of Ωand D are Lipschitz and C2-smooth respectively, then both Ωand D arepseudoconvex if and only if 0 is not in the spectrum of the ∂-Neumann Laplacian on (0,q)-forms for 1 ≤ q ≤ n − 2 when n ≥ 3; or 0 is not a limit point of the spectrum of the ∂-Neumannn Laplacian on (0, 1)-forms when n = 2. This is a joint work with Christine Laurent-Thi ́ebaut and Mei-Chi Shaw.
专家简介:Siqi Fu,Rutgers University–Camden教授, 1984年获华南师范大学学士学位,1987年获北京大学硕士学位,1994年获Washington University博士学位。