澳大利亚悉尼科技大学Jinjun Chen 教授学术报告 12月26日下午

发布时间:2016-12-26浏览次数:1296

报告人:Jinjun Chen,Professor, University of Technology Sydney (UTS), Australia

  

报告题目:Searchable Symmetric Encryption: Potential Attacks, Practical Constructions and Extensions

  

时      间:2016-12-26 (星期一) 14:30 ~ 15:30

  

地      点:仓山校区成功楼603学术报告厅

  

主      办:数学与计算机科学学院、福建省网络安全与密码技术重点实验室

  

参加对象:数计学院感兴趣教师及研究生

  

报告摘要:Data outsourcing has become one of the most successful applications of cloud computing, as it significantly reduces data owners' costs on data storage and management. To prevent privacy disclosure, sensitive data has to be encrypted before outsourcing. Traditional encryption tools such as AES, however, destroy the data searchability because keyword searches cannot be performed over encrypted data. Though the above issue has been addressed by an advanced cryptographic primitive, called searchable symmetric encryption (SSE), we observe that existing SSE schemes still suffer security, efficiency or functionality flaws. In this research, we further study SSE on three aspects. Firstly, we address the search pattern leakage issue. We demonstrate that potential attacks are exist as long as an adversary with some background knowledge learns users' search pattern. We then develop a general countermeasure to transform an existing SSE scheme to a new scheme where the search pattern is hidden. Secondly, motivated by the practical phenomenon in data outsourcing scenarios that user data is distributed over multiple data sources, we propose efficient SSE constructions which allow each data source to build a local index individually and enable the storage provider to merge all local indexes into a global one. Thirdly, we extend SSE into graph encryption with support for specific graph queries. E.g., we investigate how to perform shortest distance queries on an encrypted graph.

  

报告人简介:Dr Jinjun Chen is a Professor from Faculty of Engineering and IT, University of Technology Sydney (UTS), Australia. He is the Director of Lab for Data Systems and Visual Analytics in the Global Big Data Technologies Centre at UTS. He holds a PhD in Information Technology from Swinburne University of Technology, Australia. His research interests include scalability, big data, data science, data intensive systems, cloud computing, workflow management, privacy and security, and related various research topics. His research results have been published in more than 130 papers in international journals and conferences, including ACM Transactions on Software Engineering and Methodology (TOSEM), IEEE Transactions on Software Engineering (TSE), IEEE Transactions on Parallel and Distributed Systems (TPDS), IEEE Transactions on Cloud Computing, IEEE Transactions on Computers (TC), IEEE Transactions on Service Computing, and IEEE TKDE.

      He received UTS Vice-Chancellor's Awards for Research Excellence Highly Commended (2014), UTS Vice-Chancellor's Awards for Research Excellence Finalist (2013), Swinburne Vice-Chancellor’s Research Award (ECR) (2008), IEEE Computer Society Outstanding Leadership Award (2008-2009) and (2010-2011), IEEE Computer Society Service Award (2007), Swinburne Faculty of ICT Research Thesis Excellence Award (2007). He is an Associate Editor for ACM Computing Surveys, IEEE Transactions on Big Data, IEEE Transactions on Knowledge and Data Engineering, IEEE Transactions on Cloud Computing, as well as other journals such as Journal of Computer and System Sciences, JNCA. He is the Chair of IEEE Computer Society’s Technical Committee on Scalable Computing (TCSC), Vice Chair of Steering Committee of Australasian Symposium on Parallel and Distributed Computing, Founder and Coordinator of IEEE TCSC Technical Area on Big Data and MapReduce, Founder and Steering Committee Co-Chair of IEEE International Conference on Big Data and Cloud Computing, IEEE International Conference on Big Data Science and Engineering, and IEEE International Conference on Data Science and Systems.