报告人:黎怀谦副研究员 四川大学
报告题目:Heat Kernel Estimates and Riesz Transforms in Metric Measure Spaces
时 间:2016年4月22日 (星期五) 10:30
地 点:旗山校区数学研究中心学术报告厅
主 办:数学与计算机科学学院
参加对象:概率与统计教研室老师和研究生
报告摘要:The upper and lower bounds of the heat kernel, as well as bounds for the gradient, are derived in themetric measure space (X,d,\mu)having Riemannian curevature dimension condition RCD*(K,N) with $K\in R$ and $N\in[1,\infty)$. For applications,the large time behavior of the heat kernel, the stability of solutions to the heat equation are studied, and the $L^p$ boundedness of the Riesz transform, as well as its local case, are showed.
专家简介:黎怀谦,男,四川大学副研究员,2011年获得法国勃艮第大学博士学位,主要研究兴趣为度量测度空间上的几何与分析.