报 告 人:
报告题目:Variable Selection with False Discovery Rate Control.
时 间:
地 点:成功楼603
主 办:数学与计算机科学学院
报告摘要:
We propose a new method, semi-penalized inference with direct false discovery rate control (SPIDR), for variable selection and confidence interval construction in high-dimensional linear regression. SPIDR first uses a semi-penalized approach to constructing estimators of the regression coefficients. We show that the SPIDR estimator is ideal in the sense that it equals an ideal least squares estimator with high probability under a sparsity and other suitable conditions. Consequently, the SPIDR estimator is asymptotically normal. Based on this distributional result, SPIDR determines the selection rule by directly controlling false discovery rate. This provides an explicit assessment of the selection error. This also naturally leads to confidence intervals for the selected coefficients with a proper confidence statement. We conduct simulation studies to evaluate its finite sample performance and demonstrate its application on a breast cancer gene expression data set. Our simulation studies and data example suggest that SPIDR is a useful method for high-dimensional statistical inference in practice.
专家介绍:
1994年获美国华盛顿大学(西雅图)统计学博士学位。1994年3月至8月在Fred Hutchinson癌症研究中心(西雅图)做博士后。1994年8月受聘于美国爱荷华大学统计与精算系任助理教授,1999年4月晋升终身副教授,2004年4月晋升正教授。2000年起兼职于爱荷华大学生物统计系。黄坚教授主要研究领域涉及高维数据分析,半参数和非参数模型的估计和推断,大样本理论,生存分析和统计遗传学等。在国际学术刊物发表论文100余篇,包括发表在国际顶级或一级统计学,遗传学,生物信息,经济学及机器学习刊物论文50余篇。黄坚教授的研究成就受到国际学术界公认,其学术研究多年来一直受到美国国家科学基金会及美国国家卫生研究院支持。现任统计学顶级期刊 Annals of Statistics 副主编。1998年荣获美国国家卫生研究院科学家发展奖,2009年被推选为美国统计学会Fellow, 2013 年入选Thomson Reuters 数学与统计领域全球高引用学者榜