葡萄牙里斯本大学陈昕博士学术报告 05月23日下午

发布时间:2013-05-21浏览次数:292

   人: 陈昕 博士     葡萄牙里斯本大学 

报告题目:Navier-Stokes equation and forward-backward stochastic differential system in the Besov spaces

        间:20130523(周四)16:00-17:00

        点:旗山校区理工楼统计实验室109

        办:数学与计算机科学学院

报告摘要:

         In this talk, the Navier-Stokes equation on R_d (d > 3) formulated on Besov spaces is considered. Using a stochastic forward-backward differential system, the local existence of a unique solution in B_{p,p}^r with r > 1 + d /p is obtained. We also show the convergence to solution of the Euler equation when the viscosity tends to zero. Moreover, we prove the local existence of a unique solution in B_{p,p}^r, with p > 1, q\ge1 and r > max(1; d/p ); here the maximal time interval depends on the viscosity.